a: \(\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)=\left(2x+3y\right)^2:\left(2x+3y\right)=2x+3y\)
d: \(\left(x^2+6xy+9y^2\right):\left(x+3y\right)=\left(x+3y\right)^2:\left(x+3y\right)=x+3y\)
e: \(\dfrac{64y^3-27}{4y-3}=\dfrac{\left(4y-3\right)\left(16y^2+12y+9\right)}{4y-3}=16y^2+12y+9\)
a, \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)\)
\(=\left(2x+3y\right)^2:\left(2x+3y\right)\\ =2x+3y\)
b,\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(\Rightarrow\left(x^2+6xy+9y^2\right):\left(x+3y\right)\\ =\left(x+3y\right)^2:\left(x+3y\right)\\ =x+3y\)
c, \(64y^3-27=\left(4y-3\right)\left(16y^2+12y+9\right)\)
\(\Rightarrow\left(64x^3-27\right):\left(4y-3\right)\\ =\left[\left(4y-3\right)\left(16x^2+12x+9\right)\right]:\left(4y-3\right)\\ =16x^2+12x+9\)