a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AH=AM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AN=AH(2)
Từ (1) và (2) suy ra AN=AM
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AH=AM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AN=AH(2)
Từ (1) và (2) suy ra AN=AM
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là điểm đối xứng của H qua các đường thẳng AB,AC .Chứng minh:
a)AM = AN
b) A là trung điểm của MN
c)Tứ giác BM//CN
d)Góc MHN bằng 90o
Bài 1*: Cho tam giác ABC. Kẻ đường cao AH. Gọi D,E theo thứ tự là các điểm đối xứng của điểm H qua các cạnh AB, AC. Đường thẳng DE cắt AB,AC lần lượt tại M,N. Chứng minh:
1. Tam giác DAE là tam giác cân.
2. HA là phân giác của góc MHN.
3. Ba đường thẳng BN,CM và AH đồng quy.
4. BN,CM là các đường cao của tam giác ABC.
Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của D trên cạnh AB, AC. a) Chứng minh tứ giác ANDM là hình chữ nhật. b) Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi D là điểm đối xứng của A với H, đường thẳng kẻ qua D song song với AB cắt BC và CA lần lượt ở M và N.
a) Chứng minh : Tứ giác ABDM là hình thoi
b) Chứng minh AM vuông góc CD
c) Gọi I là trung điểm của MC. Chứng minh IN vuông góc HN
cho tam giác ABC vuông tại A (AB < AC). D là trung điểm của BC. Gọi M,N lần lượt là hình chiếu của điểm D trên cạnh AB,AC.
a) chứng minh ANDM là hình chữ nhật
b) Gọi I,K lần lượt là điểm đối xứng của N,M qua D. Tứ giác MNKI là hình gì?
c) Kẻ đường cao AH của tam giác ABC ( H thuộc BC). Tính số đo góc MHN?
Bài 7.Cho tam giác ABC, kẻ đường cao AH, Gọi D và E theo thứ tự là các điểm đối xứng với H qua AB và AC, đường thẳng DE cắt AB, AC lần lượt tại M, N. Chứng minh:
a) tam giác DAE cân
b) HA là phân giác góc MHN
c) Ba đường thẳng BN, CM, AH thẳng hàng
d) BN, CM là các đường cao của tam giác ABC
Giúp mình nha mình đang cần ghấp để làm đề cương
Bài 9: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.
a. Chứng minh tứ giác ANDM là hình chữ nhật.
b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?
c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.
Bài 10. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.
a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.
b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c. Cho BC = 4cm, tính chu vi tứ giác AEBM
Bài 11. Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n – giác đều.
Bài 12. Tính số đo mỗi góc ngoài của lục giác đều.
Bài 13. Một hình chữ nhật có diện tích 15m2. Nếu tăng chiều dài 2 lần, tăng chiều rộng 3 lần thì diện tích sẽ thay đổi như thế nào?
Bài 14: Cho tam giác AOB vuông tại O với đường cao OM (M thuộc AB). CM: AB.OM = OA.OB.