Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đại lâm nguyễn

Bài 2: Cho tam giác ABC vuông ở C có góc A bằng 600 . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông AB ( K thuộc AB). Kẻ BD vuông góc với tia AE( D  thuộc tia AE). Chứng minh:

a)      AC  = AK và AE vuông với CK

b)     KA = KB

c)      EB > AC

d)     Ba đường thẳng AC, BD, KE cùng đi qua một điểm.

a: XétΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

=>EC=EK

=>E nằm trên đường trung trực của CK(1)

Ta có: ΔACE=ΔAKE

=>AC=AK

=>A nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AE là đường trung trực của CK

=>AE\(\perp\)CK

b: Ta có: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=90^0-60^0=30^0\)

Ta có: AE là phân giác của góc CAB

=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

Ta có: ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

c: Ta có: EB=EA

EA>AC(ΔAEC vuông tại C)

Do đó: EB>AC

d: Gọi giao điểm của BD và AC là H

Xét ΔHAB có

AD,BC là các đường cao

AD cắt BC tại E

Do đó: E là trực tâm của ΔHAB

=>HE\(\perp\)AB

mà EK\(\perp\)AB

và HE,EK có điểm chung là E

nên H,E,K thẳng hàng

=>AC,BD,KE đồng quy tại H


Các câu hỏi tương tự
binh luong thi loc
Xem chi tiết
Tình Nguyễn Thị
Xem chi tiết
le thi phuong
Xem chi tiết
Chi Chi
Xem chi tiết
Thu It
Xem chi tiết
Nguyen Thi Xuan
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Yến Sún
Xem chi tiết