a: Xét tứ giác ANMP có
AN//MP
AP//MN
Do đó: ANMP là hình bình hành
b: ta có: ANMP là hình bình hành
=>AM cắt NP tại trung điểm của mỗi đường
mà I là trung điểm của NP
nên I là trung điểm của AM
=>A,I,M thẳng hàng
a: Xét tứ giác ANMP có
AN//MP
AP//MN
Do đó: ANMP là hình bình hành
b: ta có: ANMP là hình bình hành
=>AM cắt NP tại trung điểm của mỗi đường
mà I là trung điểm của NP
nên I là trung điểm của AM
=>A,I,M thẳng hàng
Cho ∆ABC.Từ 1 điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song AB cắt AC tại N và kẻ đường thẳng song song AC cắt AB tại D. Gọi I là trung điểm của đoạn ND. Chứng minh I cũng là trung điểm AM
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
2) Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH + NK = AD.
3) Tìm vị trí của điểm I để MN song song với BC.
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
2) Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH + NK = AD.
3) Tìm vị trí của điểm I để MN song song với BC.
Bài 30. Cho tam giác ABC. P là điểm tùy ý trên cạnh BC. Qua P kẻ đường thẳng song song với AB cắt AC tại E và kẻ đường thẳng song song với AC cắt AB tại E. Từ B kẻ đường thẳng song song với DE cắt PD tại N. Chứng minh rằng AN đi qua điểm cố định khi P thay đổi trên cạnh BC
Cho ΔABC có AB = AC . Trên cạnh BC lấy điểm M , qua M kẻ đường thẳng song song với AC cắt cạnh AB tại N, qua M kẻ đường thẳng song song với AB cắt cạnh AC tại P.
a,Chứng minh : tứ giác APMN là hình bình hành.
b, Chứng minh : AM , NP và đường thẳng đi qua trung điểm của cạnh AB , cạnh AC đồng quy .
c, Tìm vị trí của M trên cạnh BC để AM vuông góc với NP .
d, Chứng minh rằng : chu vi tứ giác APMN không thay đổi khi M di động trên cạnh BC.
Cho tam giác ABC. Gọi I là 1 điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng 3 điểm M,O,N thẳng hàng
2) Kẻ MH,NK,AD vuông góc với BC lần lượt là H,K,D.C/m rằng MH+NK=AD
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC tại M. Qua I, kẻ đường thẳng song song với AB cắt cạnh AC tại N.
1. Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
2. Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+ NK= AD
3. Tìm vị trí của điểm I để MN song song với BC
Cho tam giác ABC đều M là điểm bất kì trên cạnh BC Qua M kẻ đường thẳng song song với AC cắt AB tại D Qua M kẻ đường thẳng song song với AB cắt AC tại E Gọi I là trung điểm của am Chứng minh ba điểm D,I,E thẳng hàng b) khi M di chuyển trên BC thì I di chuyển trên đường nào
cho tam giác ABC có AB = AC . trên cạnh Bc lấy điểm M qua M kẻ đường thẳng song song với AC cắt cạnh AB tại N qua M kẻ đường thẳng song song cới AB, cắ t AC tại P
a . chứng minh AM, NP và đường thẳng đi qua trung điểm cạnh AB, cạnh AC đồng qui
b. tìm vị trí của M trên cạnh BC để AM vuông góc với NP
c. chứng minh rằng chu vi tứ giác APMN không thay đổi khi M di động trên cạnh BC
Cho tam giác ABC vuông tại A ( AB > AC ). Gọi I là trung điểm của AB. Từ B kẻ đường thẳng song song với CA, cắt đường thẳng CI tại D.
a) Chứng minh BD = AC và tứ giác ACBD là hình bình hành.
b) Gọi E là điểm đối xứng với D qua B. Tứ giác ABEC là hình gì? Vì sao?
c) Gọi M là giao điểm của AE và BC. MI cắt AD tại K. Chứng minh tứ giác AKBM là hình thoi.
Giúp mình với ạ mình đang cần gấp lắm á huhuu :<<