a) P xác định <=> \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
<=>\(x\ne\pm3\)
b)Với \(x\ne\pm3\)
\(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
\(=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3\left(x-3\right)+\left(x+3\right)+18}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{4}{x-3}\)
c)Với \(x\ne\pm3\)
P=4 <=>\(\dfrac{4}{x-3}=4\)
<=>\(4x-12=4\)
<=>\(4x=16\)
<=>x=4(tm)
Vậy x=4
a) ĐKXĐ `x + 3 ne 0 ` và `x -3 ne 0` và ` 9 -x^2 ne 0`
`<=> x ne -3 ` và `x ne 3` và `(3-x)(3+x) ne 0`
`<=> x ne -3` và `x ne 3`
b) Với `x ne +-3` ta có:
`P= 3/(x+3) + 1/(x-3)- 18/(9-x^2)`
`P= [3(x-3)]/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`
`P= (3x-9)/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`
`P= (3x-9+x+3+18)/[(x-3)(x+3)]`
`P= (4x +12)/[(x-3)(x+3)]`
`P= (4(x+3))/[(x-3)(x+3)]`
`P= 4/(x-3)`
Vậy `P= 4/(x-3)` khi `x ne +-3`
c) Để `P=4`
`=> 4/(x-3) =4`
`=> 4(x-3) = 4`
`<=> 4x - 12=4`
`<=> 4x = 16
`<=> x= 4` (thỏa mãn ĐKXĐ)
Vậy `x=4` thì `P =4`