\(1,\\ a,=xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\\ b,=\left(x-7\right)\left(x+7\right):\left(x-7\right)=x+7\\ 2,\dfrac{1}{a^2}-ab=\dfrac{1-a^3b}{a^2};\dfrac{1}{a^2}\text{ giữ nguyên}\\ 3,=\dfrac{-7}{t}\\ 4,=\dfrac{1-x+1-y}{x-y}=\dfrac{2-x-y}{x-y}\)
Bài 1:
\(a,\left(16x^3y^2-24x^2y^3+20x^4\right):16x^2=16x^2\left(xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\right):16x^2=xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\)
\(b,\left(x^2-49\right):\left(x-7\right)=\left[\left(x-7\right)\left(x+7\right)\right]:\left(x-7\right)=x+7\)
Bài 2:
\(\dfrac{1}{a^2}-ab=\dfrac{1-a^2b}{a^2}\)
\(\dfrac{1}{a^2}\)
Bài 3:
\(\dfrac{7\left(t-z\right)}{t\left(z-t\right)}=\dfrac{-7\left(z-t\right)}{t\left(z-t\right)}=\dfrac{-7}{t}\)
Bài 4:
\(\dfrac{x-1}{y-x}+\dfrac{1-y}{x-y}=\dfrac{x-1}{y-x}-\dfrac{1-y}{y-x}=\dfrac{x-1-1+y}{y-x}=\dfrac{x+y-2}{y-x}\)