a, ĐK: \(x>0\)
\(\dfrac{x-5\sqrt{x}}{x+3\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
b, ĐK: \(x\ge0;x\ne1\)
\(\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a: \(\dfrac{x-5\sqrt{x}}{x+3\sqrt{x}}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
b: \(\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)