Bài 1: Giải phương trình:
a) log3(2x+1)-log3(x-1)=1
b) log2(x-1)+log2(x-2)=log5(125)
c) log2(sinx)+log2(cosx)=-2, x thuộc (0;2π)
d) log√2(x+1)=log2(x2+2)-1
e) 3log3(x-1)-log1/5(x-5)3=3
f) log(x2-x-1)=log(2x+1)
Bài 2: Giải phương trình:
a) log21/3x-5log3x+4=0
b) log22(4x)-log√2(2x)=5
Bài 3: Tìm m để phương trình:
a) log1/3(x+m)+log3(2-x)=0 có nghiệm
b) log22x-7log2x+m-3=0 có 2 nghiệm x1,x2 thỏa mãn x1.x2=16
c) log23(3x)+log3x+m-1=0 có 2 nghiệm phân biệt thuộc (0;1)
Bài 2:
a: \(log^2_{\dfrac{1}{3}}x-5\cdot log_3x+4=0\)
=>\(log_{\dfrac{1}{3}}^2x+5\cdot log_{\dfrac{1}{3}}x+4=0\)
=>\(\left(log_{\dfrac{1}{3}}x+1\right)\left(log_{\dfrac{1}{3}}x+4\right)=0\)
=>\(\left[{}\begin{matrix}log_{\dfrac{1}{3}}x=-1\\log_{\dfrac{1}{3}}x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=81\end{matrix}\right.\)
b: \(log_2^24x-log_{\sqrt{2}}2x=5\)
=>\(log_2^24x-2\cdot log_22x=5\)
=>\(\left(log_24x\right)^2-2\cdot log_22x=5\)
=>\(\left(1+log_22x\right)^2-2\cdot log_22x=5\)
=>\(\left(log_22x\right)^2+1=5\)
=>\(\left(log_22x\right)^2=4\)
=>\(\left[{}\begin{matrix}log_22x=2\\log_22x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{8}\end{matrix}\right.\)
Bài 1:
a:
ĐKXĐ: x>1
\(log_3\left(2x+1\right)-log_3\left(x-1\right)=1\)
=>\(log_3\left(\dfrac{2x+1}{x-1}\right)=1\)
=>\(\dfrac{2x+1}{x-1}=3\)
=>3(x-1)=2x+1
=>3x-3=2x+1
=>x=4(nhận)
b:
ĐKXĐ: x>2
\(log_2\left(x-1\right)+log_2\left(x-2\right)=log_5\left(125\right)\)
=>\(log_2\left[\left(x-1\right)\left(x-2\right)\right]=3\)
=>\(\left(x-1\right)\left(x-2\right)=2^3=8\)
=>\(x^2-3x-6=0\)
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
c: \(log_2\left(sinx\right)+log_2\left(cosx\right)=-2\)
=>\(log_2\left(sinx\cdot cosx\right)=-2\)
=>\(log_2\left(\dfrac{1}{2}\cdot sin2x\right)=-2\)
=>\(\dfrac{1}{2}\cdot sin2x=\dfrac{1}{4}\)
=>\(sin2x=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x=\dfrac{\Omega}{6}+k2\Omega\\2x=\dfrac{5}{6}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Omega}{12}+k\Omega\\x=\dfrac{5}{12}\Omega+k\Omega\end{matrix}\right.\)
\(x\in\left(0;2\Omega\right)\)
=>\(\left[{}\begin{matrix}\dfrac{\Omega}{12}+k\Omega\in\left(0;2\Omega\right)\\\dfrac{5}{12}\Omega+k\Omega\in\left(0;2\Omega\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k+\dfrac{1}{12}\in\left(0;2\right)\\k+\dfrac{5}{12}\in\left(0;2\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}k\in\left(-\dfrac{1}{12};\dfrac{23}{12}\right)\\k\in\left(-\dfrac{5}{12};\dfrac{19}{12}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k\in\left(0;1\right)\\k\in\left(0;1\right)\end{matrix}\right.\)
=>\(x\in\left\{\dfrac{\Omega}{12};\dfrac{13}{12}\Omega;\dfrac{5}{12}\Omega;\dfrac{17}{12}\Omega\right\}\)