B1: Tam giác ABC: Trung tuyến BD,CE. I,K lần lượt là trung điểm BD, CE. M là trung điểm BC Cm: a) M,I,E thẳng hàng; M,K,D thẳng hàng b) IK//DE c)BC=4cm. Tính IK B2: Tam giác ABC cân ở A. AB=8, BC=10. Lấy D thuộc AC. Gọi E,F lần lượt là trung điểm AD và DC. M là trung điểm BD Ai cú tui vs ak. Bị mù toán hình huhu
Bài 1:
a: Xét ΔABD có E,I lần lượt là trung điểm của BA,BD
=>EI là đường trung bình của ΔABD
=>EI//AD và EI=AD/2
EI//AD
D\(\in\)AC
Do đó: EI//AC
Xét ΔBDC có
I,M lần lượt là trung điểm của BD,BC
=>IM là đường trung bình của ΔBDC
=>IM//DC và IM=DC/2
IM//DC
D\(\in\)AC
Do đó: IM//AC
IM//AC
EI//AC
IM,EI có điểm chung là I
Do đó: E,I,M thẳng hàng
Xét ΔBEC có
M,K lần lượt là trung điểm của CB,CE
=>MK là đường trung bình của ΔBEC
=>MK//EB và MK=EB/2
MK//EB
E\(\in\)AB
Do đó: MK//AB
Xét ΔACE có
D,K lần lượt là trung điểm của CA,CE
=>DK là đường trung bình của ΔAEC
=>DK//AE và DK=AE/2
DK//AE
E\(\in\)AB
Do đó: DK//AB
DK//AB
MK//AB
DK,MK có điểm chung là K
Do đó: D,M,K thẳng hàng
b: MI=DC/2
EI=AD/2
mà AD=DC
nên MI=EI
=>I là trung điểm của ME
MK=BE/2
DK=AE/2
mà BE=AE
nên MK=DK
=>K là trung điểm của DM
Xét ΔMED có
I,K lần lượt là trung điểm của ME,MD
=>IK là đường trung bình
=>IK//ED và IK=ED/2
c: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{BC}{2}\)
\(IK=\dfrac{ED}{2}=\dfrac{BC}{2}:2=\dfrac{BC}{4}=\dfrac{4}{4}=\dfrac{4}{4}=1\left(cm\right)\)