\(B=\dfrac{x^2+2}{4}+\dfrac{1}{x^2+2}+\dfrac{3}{4}x^2-\dfrac{1}{2}\)
\(B\ge2\sqrt{\dfrac{x^2+2}{4\left(x^2+2\right)}}+\dfrac{3}{4}.0-\dfrac{1}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(x^2+2=2\Rightarrow x=0\)
\(B=\dfrac{x^2+2}{4}+\dfrac{1}{x^2+2}+\dfrac{3}{4}x^2-\dfrac{1}{2}\)
\(B\ge2\sqrt{\dfrac{x^2+2}{4\left(x^2+2\right)}}+\dfrac{3}{4}.0-\dfrac{1}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(x^2+2=2\Rightarrow x=0\)
B= \(X^2+\dfrac{1}{X^2+2}\)
TÌM GTNN
PHƯƠNG PHÁP TÁCH PHẦN NGUYÊN
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
Với x nguyên, tìm GTNN của biểu thức sau:
B = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-5}\) (\(x\ge0\), \(x\ne25\))
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
Đề bài: giải hệ phương trình bằng phương pháp đặt ẩn phụ.
a. \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{x+y}{xy}+\dfrac{xy}{x+y}=\dfrac{5}{2}\\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}=\dfrac{10}{3}\end{matrix}\right.\)
Giúp mình với mình đang cần gấp
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)-\(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)+\(\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\) (x>0, x khác 1)
a) Rút gọn P
b) Tìm x để \(\dfrac{P}{2012\sqrt{x}}\) đạt GTNN
B=\(\dfrac{\sqrt{x}}{x+\sqrt{x}}\) : \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)với x>0
a) Rút gọn B
b) Tìm các giá trị của x để B= \(\dfrac{2}{7}\)
c) Tìm GTNN của B