\(B=\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}}{x}\)