b: ĐKXĐ: x>=2
\(2\sqrt{9x-18}-\sqrt{x-2}+\dfrac{1}{2}\cdot\sqrt{4x-8}=18\)
=>\(2\cdot3\cdot\sqrt{x-2}-\sqrt{x-2}+\dfrac{1}{2}\cdot2\sqrt{x-2}=18\)
=>\(6\sqrt{x-2}=18\)
=>\(\sqrt{x-2}=3\)
=>x-2=9
=>x=11(nhận)
b: ĐKXĐ: x>=2
\(2\sqrt{9x-18}-\sqrt{x-2}+\dfrac{1}{2}\cdot\sqrt{4x-8}=18\)
=>\(2\cdot3\cdot\sqrt{x-2}-\sqrt{x-2}+\dfrac{1}{2}\cdot2\sqrt{x-2}=18\)
=>\(6\sqrt{x-2}=18\)
=>\(\sqrt{x-2}=3\)
=>x-2=9
=>x=11(nhận)
Giải phương trình sqrt(x - 2) + 2sqrt(9x - 18) - sqrt(4x - 8) = 10 giúp e ạ
2sqrt(x + 2) + 3sqrt(4x + 8) - sqrt(9x + 18) = 10 giải phương trình
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
\(\sqrt{x+2}-2\sqrt{4x+8}+3\sqrt{9x+18}=18\)
Giải phương trình:
a) \(2\sqrt{4x-8}-\dfrac{2}{3}\sqrt{9x-18}=\sqrt{49x-98}-10\)
b) \(x-\sqrt{x-1}=3\)
\(\sqrt{\text{(9x - 18)}}\) - 1/2 \(\sqrt{\text{(4x - 8)}}\) + \(\sqrt{\text{(x - 2)}}\) = 1
Giải phương trình :
a) \(\sqrt{2x^2-\sqrt{2}x+\dfrac{1}{4}}=\sqrt{2}x\)
b)\(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)