\(A=\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(2+x\right)^2\)
Hằng đẳng thức áp dụng : \(a^2-2ab+b^2=\left(a-b\right)^2\)
\(\Rightarrow A=\left[\left(x-1\right)-\left(x+2\right)\right]^2\)
\(\Rightarrow A=\left(x-1-x-2\right)^2\)
\(\Rightarrow A=\left[\left(x-x\right)+\left(-2-1\right)\right]^2\)
\(\Rightarrow A=\left(-3\right)^2\)
\(\Rightarrow A=9\)
Vậy A = 9
Ta có:
\(A=\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(2+x\right)^2\\ =\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2\\ =\left[\left(x-1\right)-\left(x+2\right)\right]^2\\ =\left(x-1-x-2\right)^2\\ =\left(-3\right)^2=9\)
Vậy \(A=9\)
*HĐT số 2: \(\left(a-b\right)^2=a^2-2ab+b^2\)