Bài 4: Cho các đa thức: A(x) 4x3 + x2 – 2x – 3
B(x) -3x4 + 2x -
C(x) - 3x4 - x2 - 4x3
a/ Tính A(x) + B(x)
b/ Tìm nghiệm của H(x) C(x)+ A(x) – B(x)
Dạng 3: Hình học
Bài 1: Cho tam giác ABC cân tại A ; AB 5 cm; BC 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác
a/ Tính AH và BG
b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E. Chứng minh AG CE
c/ Chứng minh EA song song với CG
Bài...
Đọc tiếp
Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3
B(x) = -3x4 + 2x -
C(x) = - 3x4 - x2 - 4x3
a/ Tính A(x) + B(x)
b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x)
Dạng 3: Hình học
Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác
a/ Tính AH và BG
b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E. Chứng minh AG = CE
c/ Chứng minh EA song song với CG
Bài 2: Cho ABC cân tại A; AM là đường trung tuyến; BI là đường cao. AM cắt BI tại H, CH cắt AB tại D.
a/ Chứng minh CD AB
b/ c/m BD = CI
c/ c/m DI // BC
d/ Tia phân giác của góc ACH cắt AH tại O. Tính số đo góc ADO
Bài 3: Cho ABC vuông tại A, đường phân giác BK. Kẻ KI vuông góc với BC (IBC)
a/ Chứng minh ABK = IBK
b/ Kẻ đường cao AH của ABC . C/m AI là tia phân giác của góc HAC
c/ Gọi F là giao điểm của AH và BK. C/m AFK cân và AF<KC
d/ Lấy M thuộc tia AH sao cho AM = AC. C/m IMIF
MỘT SỐ BÀI NÂNG CAO:
Bài 1: Tính giá trị của đa thức sau biết x+y-2 =0
M= x3 +x2y – 2x2 – xy – y2 + 3y +x – 1
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
(x2 – 9)2 + + 10
Bài 3:Tìm giá trị nhỏ nhất của biểu thức A =
Bài 4:Chứng tỏ rằng đa thức H(x) = 2x2 + 6x + 10 không có nghiệm.
HELP ;-;