`a)\sqrt{3-2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}=\sqrt{(\sqrt{2}-1)^2}=|\sqrt{2}-1|=\sqrt{2}-1`
`b)\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+3}=\sqrt{(2+\sqrt{3})^2}=|2+\sqrt{3}|=2+\sqrt{3}`
`c)\sqrt{11-6\sqrt{2}}=\sqrt{3^2-2.3.\sqrt{2}+2}=\sqrt{(3-\sqrt{2})^2}=|3-\sqrt{2}|=3-\sqrt{2}`
`d)\sqrt{11+6\sqrt{2}}=\sqrt{3^2+2.3.\sqrt{2}+2}=\sqrt{(3+\sqrt{2})^2}=|3+\sqrt{2}|=3+\sqrt{2}`
`e)\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{(\sqrt{2}+1)^2}=|\sqrt{2}+1|=\sqrt{2}+1`