a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)
b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)
a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)
b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)
Áp dụng quy tắc nhân các căn bậc hai,hãy tính:
a)\(\sqrt{0,4}\) . \(\sqrt{6,4}\)
b) \(\sqrt{2,7}\) . \(\sqrt{5}\).\(\sqrt{1,5}\)
Áp dụng quy tắc khai phương 1 tích, hãy tính:
a)\(\sqrt{75.48}\)
b) \(\sqrt{2,5.14,4}\)
Biểu diễn \(\sqrt{ab}\) ở dạng tích các căn bậc hai với a<0 và b<0
Áp dụng tính \(\sqrt{\left(-25\right).\left(-64\right)}\)
Áp dung quy tắc khai phương một tích,hãy tính:
a) \(\sqrt{0,09.64}\)
b) \(\sqrt{2^4.\left(-7\right)^2}\)
c) \(\sqrt{12,1.360}\)
d)\(\sqrt{2^2.3^4}\)
áp dụng quy tắc khai phương một tích :
a) \(\sqrt{90\cdot6.4}\)
b) \(\sqrt{2,5\cdot14,4}\)
bài 1:Cho các biểu thức sau:
A=\(\sqrt{\frac{2x+3}{x-3}}\) à B=\(\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
a) Tìm x để A có nghãi.Tìm x để B có nghĩa
b) Với giá trị nào của x thì A=B
bài 2:Biểu diễn \(\sqrt{\frac{a}{b}}\) với a<0 và b<0 ở dạng thương của hai căn thức
Áp dụng tính: \(\sqrt{\frac{-49}{-81}}\)
Cho A= $\sqrt{2+\sqrt{2+...+\sqrt{2}}}$ gồm 2015 dấu căn bậc hai. Chứng minh rằng A không phải là số tự nhiên
Thực hện phép tính
a, \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b,\(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
THỰC HIỆN PHÉP TÍNH
26) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
40)\(\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}+57\right|}\)