a)\(\sqrt{75\cdot48}=\sqrt{25\cdot3\cdot48}=\sqrt{25\cdot144}=\sqrt{25}\cdot\sqrt{144}=5\cdot12=60\)
b) \(\sqrt{2,5\cdot14,4}=\sqrt{25\cdot144\cdot\frac{1}{100}}=\sqrt{25}\cdot\sqrt{144}\cdot\sqrt{\frac{1}{100}}=5\cdot12\cdot\frac{1}{10}=6\)
a)\(\sqrt{75\cdot48}=\sqrt{25\cdot3\cdot48}=\sqrt{25\cdot144}=\sqrt{25}\cdot\sqrt{144}=5\cdot12=60\)
b) \(\sqrt{2,5\cdot14,4}=\sqrt{25\cdot144\cdot\frac{1}{100}}=\sqrt{25}\cdot\sqrt{144}\cdot\sqrt{\frac{1}{100}}=5\cdot12\cdot\frac{1}{10}=6\)
áp dụng quy tắc khai phương một tích :
a) \(\sqrt{90\cdot6.4}\)
b) \(\sqrt{2,5\cdot14,4}\)
Áp dung quy tắc khai phương một tích,hãy tính:
a) \(\sqrt{0,09.64}\)
b) \(\sqrt{2^4.\left(-7\right)^2}\)
c) \(\sqrt{12,1.360}\)
d)\(\sqrt{2^2.3^4}\)
Áp dụng quy tắc nhân các căn bậc hai ,hãy tính :
a)\(\sqrt{10}\).\(\sqrt{40}\)
b)\(\sqrt{2}\).\(\sqrt{162}\)
Áp dụng quy tắc nhân các căn bậc hai,hãy tính:
a)\(\sqrt{0,4}\) . \(\sqrt{6,4}\)
b) \(\sqrt{2,7}\) . \(\sqrt{5}\).\(\sqrt{1,5}\)
khai phương một tích
\(\sqrt{2x+2\sqrt{2x}-1}\)
\(\sqrt{117^2-108^2}\)
Rút gọn
\(\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18}-8\sqrt{2}}\)
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-\sqrt{1+\sqrt{2}}\right)\)
giải phương trình : \(P=\sqrt{x-2}+\sqrt{4-x}\)
áp dụng bất đẳng thức Bu-nha-cốp-xki
Biểu diễn \(\sqrt{ab}\) ở dạng tích các căn bậc hai với a<0 và b<0
Áp dụng tính \(\sqrt{\left(-25\right).\left(-64\right)}\)
a. Chứng minh : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. Áp dụng : Tính giá trị của biểu thức :
\(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
cảm ơn các bạn trước nhé!
a) Chứng minh: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với n \(\in\) N*)
b) Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Chứng minh 18<S<19
Giúp em với mấy anh chị ơiiiiiiiiiiii