a: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
b: BK vuông góc AC
BK vuôg góc SA
=>BK vuông góc (SAC)
a: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
b: BK vuông góc AC
BK vuôg góc SA
=>BK vuông góc (SAC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông (ABC) SA= a cân 3; AB=a
A: Chứng minh (SAB) vuông (SAC)
B: Gọi M là trung điểm của BC, chứng minh BC vuông góc vs SM
C: Tính góc giữa SC và (ABC
cho hình chóp S.ABCD, đáy là hình vuông,cạnh a. tâm giác SAB và tam giác SAC vuông tại A. góc giữa SC và(ABCD) bằng 30 độ.
a) chứng minh SA vuông góc với (ABCD)
b)cho AH là đường cao tâm giác SAB, chứng minh AH vuông góc với SC
c)góc giữa SC và (SAB)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
cho hình chóp S.ABC đáy là tam giác vuông (AB vuông BC) cạnh bên SA vuông góc với (ABC)
a) chứng minh BC vuông (SAB)
b) BH là đường cao tam giác ABC. Chứng minh BH vuông SC
Cho chóp SABC có đáy là tam giác ABC vuông tại B có sa vuông (ABC) (.) Tam giác sab và sac kẻ dường cao AH vuông AB và AK vuông SC C/m AH vuông ( SBC), AHK vuông SAC, EA vuông AC
cho hình chóp S.ABC đáy là tam giác vuông (AC vuông CB) cạnh bên SA vuông góc với (ABC)
a) chứng minh BC vuông (SAC)
b) CK là đường cao tam giác ABC. Chứng minh CK vuông SB
GIÚP EM VỚI Ạ Cho hình chóp S.ABC có đây là tam giác ABC với AB=4a, đường cao CH =a (H thuộc AB) và góc ACH = 45° Hai mặt bên (SAB),(SAC) cũng vuông góc với đáy, SA=5a a) Chứng minh SA vuông góc với mặt phẳng (ABC). b) Chứng minh (SCH) vuông góc với (SAB). c) Trên các đường thẳng vuông góc với mặt phẳng (ABC) kẻ từ B,C, lấy lần lượt các điểm B',C' nằm cùng phía S so với (ABC) sao cho BB'=3a,CC' =a. Tính góc giữa hai mặt phẳng (SB'C'), (ABC).
Bài 6. Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Kẻ OH vuông góc với mp(ABC)
tại H. Chứng minh rằng
a) OA⊥BC,OB⊥AC,OC⊥AB
b) Gọi K là giao điểm của AH với BC. Chứng minh rằng AK⊥BC
c) Gọi M là giao điểm của CH với AB. Chứng minh rằng AB⊥MC . Từ đó suy ra H là trực tâm tam giác
ABC.
d)
Bài 7. Cho hình chóp SABCD có đáy ABCD là hình chứ nhật có SA vuông góc với mp(ABCD). Chứng minh
rằng các mặt bên của hình chóp là các tam giác vuông.
Bài 8. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D với AD=DC=AB/2 . Gọi I là trung điểm của đoạn AB, SA vuông góc với mặt đáy. Chứng minh rằng
a) Tam giác ABC vuông tại C
b) CI⊥SB,DI⊥SC
c)CB⊥(SAC)
và các mặt bên hình chóp là các tam giác vuông
Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:
a) AH, SK và BC đồng quy.
b) SC vuông góc với mặt phẳng (BHK) và (SAC) ⊥ (BHK)
c) HK vuông góc với mặt phẳng (SBC) và (SBC) ⊥ (BHK)