Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Chi

a,b,c\(\ge\)0

CM \(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\le1\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 13:28

ĐKXĐ: \(ab+bc+ca\ne0\)

- Nếu 1 biến bằng 0 thì BĐT hiển nhiên đúng

- Nếu cả 3 biến đều khác 0:

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Ta có:

\(VT=\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ca\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi 3 biến bằng nhau hoặc 1 biến bằng 0, 2 biến bằng nhau


Các câu hỏi tương tự
Khánh Đào
Xem chi tiết
Kamikaze
Xem chi tiết
Quảng Trường Lê
Xem chi tiết
Nguyễn Đặng Bảo Trâm
Xem chi tiết
{Masilive))
Xem chi tiết
Nguyễn Văn Trí
Xem chi tiết
minh trinh
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết