a: \(A=x^2-2x-4\)
\(=x^2-2x+1-5=\left(x-1\right)^2-5>=-5\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
b:
ĐKXĐ: x<>0
\(B=\dfrac{A}{x^2}=\dfrac{x^2-2x-4}{x^2}=1-\dfrac{2}{x}-\dfrac{4}{x^2}\)
\(=-\dfrac{4}{x^2}-\dfrac{2}{x}+1\)
\(=-\left(\dfrac{4}{x^2}+\dfrac{2}{x}-1\right)\)
\(=-\left(\dfrac{4}{x^2}+2\cdot\dfrac{2}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{5}{4}\right)\)
\(=-\left(\dfrac{2}{x}+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\forall x\ne0\)
Dấu '=' xảy ra khi \(\dfrac{2}{x}+\dfrac{1}{2}=0\)
=>\(\dfrac{2}{x}=-\dfrac{1}{2}\)
=>x=-4