a, \(\left(x+2\right)\left(x+4\right)-x^2=24\\ \Rightarrow x^2+6x+8-x^2=24\\ \Rightarrow6x+8=24\\ \Rightarrow6x=16\\ \Rightarrow x=\dfrac{8}{3}\)
b, \(\left(x+5\right)\left(x-5\right)=x^2+x\)
\(\Rightarrow x^2+x-\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow x^2+x-x^2+25=0\\ \Rightarrow x+25=0\\ \Rightarrow x=-25\)
\(a,< =>x^2+4x+2x+8-x^2=24< =>6x+8=24< =>x=\dfrac{24-8}{6}=\dfrac{8}{3}\)
b,\(< =>x^2-25-x^2-x=0< =>-25-x=0< =>x=-25\)
c,\(< =>4x^2-9-4x^2+4x=0< =>4x-9=0< =>x=\dfrac{9}{4}\)
d,\(< =>x^3+2^3=9< =>x^3=1=>x=1\)
c,(2x+3)(2x-3)=4x(x-1)
⇔ 4x2-9=4x2-4x
⇔ 4x=9
\(\Leftrightarrow x=\dfrac{9}{4}\)
d, (x+2)(x2-2x+4)=9
⇔ x3+8=9
⇔ x3=1
⇔ x=1
a: Ta có: \(\left(x+2\right)\left(x+4\right)-x^2=24\)
\(\Leftrightarrow x^2+6x+8-x^2=24\)
\(\Leftrightarrow6x=16\)
hay \(x=\dfrac{8}{3}\)
b: Ta có: \(\left(x+5\right)\left(x-5\right)=x^2+x\)
\(\Leftrightarrow x^2+x-x^2+25=0\)
\(\Leftrightarrow x+25=0\)
hay x=-25
c: Ta có: \(\left(2x+3\right)\left(2x-3\right)=4x\left(x-1\right)\)
\(\Leftrightarrow4x^2-4x-4x^2+9=0\)
\(\Leftrightarrow-4x=-9\)
hay \(x=\dfrac{9}{4}\)
d: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)=9\)
\(\Leftrightarrow x^3+8=9\)
\(\Leftrightarrow x^3=1\)
hay x=1