\(A^2_n-C^{n-1}_{n+1}=4n+6\) \(\left(Đkxđ:n\ge2\right)\)
\(\Leftrightarrow A^2_n-C^2_{n+1}=4n+6\)
\(\Leftrightarrow n\left(n-1\right)-\dfrac{n\left(n+1\right)}{2!}=4n+6\)
\(\Leftrightarrow n^2-n-\dfrac{n^2+n}{2}=4n+6\)
\(\Leftrightarrow2n^2-2n-n^2-n=8n+12\)
\(\Leftrightarrow n^2-11n-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=12\left(TM\right)\\n=-1\left(loại\right)\end{matrix}\right.\)
Vậy n=12
Chúc bạn học tốt!