a) \(5^{x+3}+5^x=126\)
\(\Rightarrow5^x\cdot\left(5^3+1\right)=126\)
\(\Rightarrow5^x\cdot\left(125+1\right)=126\)
\(\Rightarrow5^x=\dfrac{126}{126}\)
\(\Rightarrow5^x=1\)
\(\Rightarrow5^x=5^0\)
\(\Rightarrow x=0\)
b) \(\dfrac{9-3x}{2}=\dfrac{5-2x}{3}\)
\(\Rightarrow\dfrac{3\cdot\left(9-3x\right)}{6}=\dfrac{2\cdot\left(5-2x\right)}{6}\)
\(\Rightarrow3\cdot\left(9-3x\right)=2\cdot\left(5-2x\right)\)
\(\Rightarrow27-9x=10-4x\)
\(\Rightarrow-4x+9x=27-10\)
\(\Rightarrow5x=17\)
\(\Rightarrow x=\dfrac{17}{5}\)
c) \(7-4\left(x+1\right)=5\)
\(\Rightarrow4\left(x+1\right)=7-5\)
\(\Rightarrow4\left(x+1\right)=2\)
\(\Rightarrow x+1=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)