`@` `\text {Ans}`
`\downarrow`
`a)`
`210 \div x - 1/2 = 20,5`
`=> 210 \div x = 20,5 + 1/2`
`=> 210 \div x =21`
`=> x = 210 \div 21`
`=> x = 10`
Vậy, `x = 10.`
`b)`
`7 * 3^x + 20*3^x = 3^25`
`=> 3^x * (7+20) = 3^25`
`=> 3^x * 27 = 3^25`
`=> 3^x * 3^3 = 3^25`
`=> 3^x = 3^25 \div 3^3`
`=> 3^x = 3^22`
`=> x = 22`
Vậy, `x = 22.`
a) \(210:x-\dfrac{1}{2}=20,5\)
\(\Rightarrow210:x=20,5+\dfrac{1}{2}\)
\(\Rightarrow210:x=21\)
\(\Rightarrow x=\dfrac{210}{21}\)
\(\Rightarrow x=10\)
b) \(7\cdot3^x+20\cdot3^x=3^{25}\)
\(\Rightarrow3^x\cdot\left(7+20\right)=3^{25}\)
\(\Rightarrow3^x\cdot27=3^{25}\)
\(\Rightarrow3^x\cdot3^3=3^{25}\)
\(\Rightarrow3^{x+3}=3^{25}\)
\(\Rightarrow x+3=25\)
\(\Rightarrow x=25-3\)
\(\Rightarrow x=22\)
\(a)\)
\(210:x-\dfrac{1}{2}=20,5\)
\(210:x=20,5+\dfrac{1}{2}\)
\(210:x=21\)
\(x=210:21\)
\(x=10\)
Vậy \(x=10\)
\(b)\)
\(7.3^x+20.3^x=3^{25}\)
\(3^x.\left(7+20\right)=3^{25}\)
\(3^x.27=3^{25}\)
\(3^x.3^3=3^{25}\)
\(3^x=3^{25}:3^3\)
\(3^x=3^{22}\)
\(x=22\)
Vậy \(x=22\)