A= 1/2.5+1/5.8+1/8.11+...+1/152.155
A= 1/2-1/5+1/5-1/8+...+1/152-1/155 loại bỏ các số giống nhau ta được:
A=1/2-1/155=153/310
Vậy A=153/310
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{152.155}\)
\(=\frac{1}{3}.\frac{5-2}{2.5}+\frac{1}{3}.\frac{8-5}{5.8}+\frac{1}{3}.\frac{11-8}{8.11}+...+\frac{1}{3}.\frac{155-152}{152.155}\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{152}-\frac{1}{155}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{155}\right)\)
\(=\frac{1}{3}.\frac{153}{310}\)
\(=\frac{51}{310}\)
Vậy A \(=\frac{51}{310}\)
A= 1/2.5+1/5.8+1/8.11+...+1/152.155
A= 1/2-1/5+1/5-1/8+...+1/152-1/155 loại bỏ các số giống nhau ta được:
A=1/2-1/155=153/310
Vậy A=153/310