\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2019}\right)^2\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2019^2}\)
=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2018\cdot2019}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)
=>\(A< 1-\dfrac{1}{2019}=1\)