\(7\cdot4^x=112\)
\(\Rightarrow4^x=\dfrac{112}{7}\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
_____
\(2\cdot5^{x-3}=250\)
\(\Rightarrow5^{x-3}=\dfrac{250}{2}\)
\(\Rightarrow5^{x-3}=125\)
\(\Rightarrow5^{x-3}=5^3\)
\(\Rightarrow x-3=3\)
\(\Rightarrow x=3+3\)
\(\Rightarrow x=6\)
____
\(12:\left\{400:\left[500-\left(5^3+5^2\cdot7\right)\right]\right\}+10\)
\(=12:\left\{400:\left[500-\left(125+25\cdot7\right)\right]\right\}+10\)
\(=12:\left\{400:\left[500-\left(125+175\right)\right]\right\}+10\)
\(=12:\left[400:\left(500-300\right)\right]+10\)
\(=12:\left(400:200\right)+10\)
\(=12:2+10\)
\(=6+10\)
\(=16\)
\(7\cdot4^x=112\)
\(\Rightarrow4^x=112:7\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
\(---\)
\(2\cdot5^{x-3}=250\)
\(\Rightarrow5^{x-3}=250:2\)
\(\Rightarrow5^{x-3}=125\)
\(\Rightarrow5^{x-3}=5^3\)
\(\Rightarrow x-3=3\)
\(\Rightarrow x=3+3\)
\(\Rightarrow x=6\)
Vậy \(x=6.\)
\(---\)
\(12:\left\{400:\left[500-\left(5^3+5^2\cdot7\right)\right]\right\}+10\)
\(=12:\left\{400:\left[500-\left(125+175\right)\right]\right\}+10\)
\(=12:\left\{400:\left[500-300\right]\right\}+10\)
\(=12:\left\{400:200\right\}+10\)
\(=12:2+10\)
\(=6+10\)
\(=16\)
#\(Toru\)