Ta có:
\(5^{300}=5^{3^{100}}\)\(=125^{100}\)(1)
\(3^{500}=3^{5^{100}}=243^{100}\)(2)
Ta thấy (1) < (2)
+ 5300 = (53)100 = 125100
+ 3500 = (35)100 = 243100
125100 < 243100
=> 5300 < 3500
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
mà 125<243
nên \(5^{300}< 3^{500}\)