*) Ta có : \(4n^2+28n=8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)\)
Vì \(8n⋮8\) nên suy ra \(8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)⋮8\)
Vậy \((4n^2+28n)⋮8\) . ( Đpcm )
*) Ta có : \(4n^2+28n=8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)\)
Vì \(8n⋮8\) nên suy ra \(8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)⋮8\)
Vậy \((4n^2+28n)⋮8\) . ( Đpcm )
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
chứng minh rằng: m12-m8-m4+1 chia hết cho 512 với mọi số tự nhiên lẻ n
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 8. Chứng minh rằng abc(a + b + c + abc) chia hết cho 8
CMR nếu m tận cùng bằng 6 thì
P=12^m+9^m+8^m+6^m chia hết cho 1991
Trong các mệnh đề sau mệnh đề nào sai?
A. ∃n∈N, chia hết cho 11
B. ∃n∈N , \(n^2+1\) chia hết cho 4
C. Tồn tại số nguyên tố chia hết cho 5
D. ∃n∈Z , \(2x^2-8=0\)
Cho p là số nguyên tố lớn hơn 3. CMR
a) (p-1)(p+1) chia hết cho 24
b) p4 - 1 chia hết cho 48
Chứng minh nếu a là 1 số nguyên không chia hết cho 5 và không chia hết cho 7 thì \(\left(a^4-1\right)\left(a^4+15a^2+1\right)\)chia hết cho 35
Cho các số nguyên dương x, y, z thỏa mãn: \(x^2+y^2=z^2\)
a) Chứng minh A=xy chia hết cho 12
b) Chứng minh B = \(x^3y-xy^3\) chia hết cho 7
Tìm các số nguyên dương (m,n) sao cho 2m+1 chia hết cho n và 2n+1 chia hết cho m