\(=\dfrac{19}{6}-\dfrac{125}{1000}=\dfrac{19}{6}-\dfrac{1}{8}=\dfrac{152}{48}-\dfrac{6}{48}=\dfrac{73}{24}\)
`3 1/6 - 125/1000 = 19/6 - 1/8 = 152/48 - 6/48 = (152-6)/48=146/48=73/24`
\(=\dfrac{19}{6}-\dfrac{125}{1000}=\dfrac{19}{6}-\dfrac{1}{8}=\dfrac{152}{48}-\dfrac{6}{48}=\dfrac{73}{24}\)
`3 1/6 - 125/1000 = 19/6 - 1/8 = 152/48 - 6/48 = (152-6)/48=146/48=73/24`
Thực hiện phép tính
a)\(\dfrac{5^{16}.27^{7}}{125^{5}.9^{11}}\)
b)\((-0,2)^{2}.5-\dfrac{2^{13}.27^{3}}{4^{6}.9^{5}}\)
c)\(\dfrac{5^{6}+2^{2}.25^{3}+2^{3}.125^{2}}{26.5^{6}}\)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)(x ϵ N*)
Tìm x :
\(\left(x-\dfrac{1}{3}\right)^3=\dfrac{-8}{125}\)
Tìm x, biết:
a) \(\dfrac{2}{3}\)x - \(\dfrac{1}{2}\)x = \(\left(-\dfrac{7}{12}\right)\) . \(1\dfrac{2}{5}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2\) = \(\dfrac{9}{4}\)
c) (1,25 - \(\dfrac{4}{5}\)x)3 = -125
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
tìm x
(\(\dfrac{6}{5}\))\(^x\)=\(\dfrac{216}{125}\)
Tính:
a) \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
b) T=\(\dfrac{5^{16}.27^7}{125^5.9^{11}}\)
Tìm x biết:
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\left(x\inℕ^∗\right)\)
Giúp mik với, giải chi tiết dùm nhe.