\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)
\(<=>2x(x-1)-3(x-1)=0\)
\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)
th2 \(X-1=0<=>x=1\)
pt có tập nghiệm S={3/2;1}
\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)
\(x-1=0\\ \Rightarrow x=1\)
\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)
\(2x^3+3x-8x+3=0\)
\(\Leftrightarrow2x^3-5x+3=0\)
\(\Leftrightarrow2x^3-2x-3x+3=0\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2+2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1-\sqrt{7}}{2}\\x=\dfrac{-1+\sqrt{7}}{2}\end{matrix}\right.\)