Ta có: \(\dfrac{2x-2}{5}=\dfrac{3}{5x+1}\)
\(\Leftrightarrow10x^2+2x-10x-2-15=0\)
\(\Leftrightarrow10x^2-8x-17=0\)
\(\Delta=\left(-8\right)^2-4\cdot1\cdot\left(-17\right)=132\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{8-2\sqrt{33}}{20}=\dfrac{4-\sqrt{33}}{10}\\x_2=\dfrac{8+2\sqrt{33}}{20}=\dfrac{4+\sqrt{33}}{10}\end{matrix}\right.\)
\(2x-\dfrac{2}{5}=\dfrac{3}{5}x+1\)
\(2x-\dfrac{3}{5}x=\dfrac{2}{5}+1\)
\(\dfrac{7}{5}x=\dfrac{7}{5}\)
\(x=\dfrac{7}{5}\div\dfrac{7}{5}\)
\(x=1\)