15: \(y^{k+1}\cdot\left(2y^{2k-1}+5\cdot y^{3-k}\right)\)
\(=y^{k+1}\cdot2\cdot y^{2k-1}+y^{k+1}\cdot5\cdot y^{3-k}\)
\(=2\cdot y^{3k}+5\cdot y^4\)
4: \(2y^3\cdot\left(y^{m+2}-3y^{n+1}\right)\)
\(=2\cdot y^3\cdot y^{m+2}-2y^3\cdot3\cdot y^{n+1}\)
\(=2\cdot y^{m+5}-6\cdot y^{n+4}\)
16: \(2x^{k-2}\cdot\left(x^{2k+2}+3\cdot x^{5-2k}\right)\)
\(=2x^{k-2}\cdot x^{2k+2}+2\cdot x^{k-2}\cdot3\cdot x^{5-2k}=2\cdot x^{3k}+6\cdot x^{3-k}\)
13: \(x^2\cdot\left(2x^{m-2}-x^{n+1}\right)\)
\(=x^2\cdot2\cdot x^{m-2}-x^2\cdot x^{n+1}\)
\(=2\cdot x^{m}-x^{n+3}\)