\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tính lim \(\left(x\rightarrow\pm\right)\)\(\dfrac{\sqrt{x^2+2x+3}+4x+1}{\sqrt{4x^2+1}+2-x}\)
Cho 3 số thực \(a,b,c\ge0\), \(a^2+b^2+c^2=4\left(a+b+c\right)-2bc\).
Tìm min \(P=8\left(c+b\right)+a^2+\dfrac{2025}{\sqrt{2a+2b+1}}+\dfrac{2025}{\sqrt{2c+1}}\)
\(lim = { \sqrt{1+2x} - (1+ 3x)^{1\3} \over x^2}\) ( x->0)
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
\(a,\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-\sqrt{x^2+x+1}}{x^2-2x+1}\)
\(b,\lim\limits_{x\rightarrow7}\dfrac{\sqrt{x-3}-2}{49-x^2}\)
xét tính đồng biến nghịch biến
a) \(y=\sqrt{3x^3-x^2-x}\)
b) \(y=\sqrt{x^2-x-1}\)
c) \(y=\sqrt{x^2-2x}\)
d) \(y=\sqrt{3x^2-2x+1}\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)
b) \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)
c) \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)
d) \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)
tính đạo hàm
a) \(y=\sqrt{\left(x+2\right)\left(x+3\right)}\)
b) \(y=\sqrt{\dfrac{2x+1}{x-3}}\)
c) \(y=\left(x+1\right)\sqrt{x+3}\) tính y'(1)
d) \(y=\dfrac{x-1}{x^2+1}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{\sqrt{3x+1}-2}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-2x}{\sqrt{x+2}-2}\)