Phương trình hoành độ giao điểm của (P) và (d):
x² = mx + m + 1
⇔ x² - mx - m - 1 = 0
∆ = (-m)² - 4.1.(-m - 1)
= m² + 4m + 4
= (m + 2)²
Để (P) cắt (d) tại hai điểm phân biệt thì ∆ > 0
⇔ (m + 2)² > 0
⇔ m + 2 ≠ 0
⇔ m ≠ -2
Phương trình hoành độ giao điểm của (P) và (d):
x² = mx + m + 1
⇔ x² - mx - m - 1 = 0
∆ = (-m)² - 4.1.(-m - 1)
= m² + 4m + 4
= (m + 2)²
Để (P) cắt (d) tại hai điểm phân biệt thì ∆ > 0
⇔ (m + 2)² > 0
⇔ m + 2 ≠ 0
⇔ m ≠ -2
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
trong mặt phẳng tọa độ Oxy cho đường thẳng(d);y=mx.3 tham số m và parabol y=x mũ hai
a, tìm m để đường thẳng (d) đi qua điểm A(1;0)
b, tìm m để đường thẳng (d)cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là x1 và x hai thỏa mãm /x1 - x hai/ bằng hai
Trong mặt phẳng tọa độ Oxy,cho Parabol (P):y=x^2 và đường thẳng (d): y=2x-m+1 (m là tham số)
a) Tìm tọa độ giao điểm của (d) và (P) khi m=2
b) Tìm M để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có tung độ là y1,y2 thỏa mãn
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
Trong mặt phẳng tọa độ Oxy Cho parabol p = yx² và đường thẳng dy = mx + 3 ( m là than
số )
a) tìm tọa độ giao điểm của P và D Khi m = 2b) tìm m Vẽ đường thẳng d cắt parabol p tại 2 điểm phân biệt có hoành độ x1 x2 thỏa mãn 1 $\frac{1}{x¹}$ + $\frac{1}{x²}$ = $\frac{3}{2}$
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x2 và đường thẳng (d): y=mx+5.
CMR:Với mọi giá trị của tham số m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2.Tìm m để x12-9-mx2
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng (d): \(y=2x-m+1\) ( Với m là tham số )
a, Tìm m để đường thẳng (d) đi qua điểm A(-1;3)
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ \(\left(x_1;y_1\right):\left(x_2;y_2\right)\) sao cho \(x_1x_2\left(y_1+y_2\right)+48=0\)
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.
trong mặt phẳng tọa độ Oxy. Cho parabol (P) có phương trình y=x2 và đường thẳng (d) có phương trình y=5x -m + 2 ( m là tham số )
1) Điểm A=(2;4) có thuộc đô thị hàm số (P) không. Tại sao
2) Tìm m để dường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tung độ y1,y2 tỏa mãn y1 + y2 + y1 x y2
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.