Cho hệ phương trình x+my=m+1 mx+y=3m-1 Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y
Cho hệ phương trình:
\(\hept{\begin{cases}\left(m+1\right)\cdot x+m\cdot y=2\cdot m-1\\m\cdot x-y=m^2-2\end{cases}}\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn x*y lớn nhất.
Cho hệ phương trình mx+y= m +2 và 4x+ m=3m +2
a. Tìm m để hệ phương trình có nghiệm?
b. Tìm m để hệ phương trình có nghiệm duy nhất sao cho P=2x2+y nhỏ nhất?
Cho hệ phương trình \(\hept{\begin{cases}mx\:+\:y\:=\:n\\x\:+\:y\:=\:1\end{cases}}\)
Tìm n để hệ có nghiệm với mọi giá trị của m
Giả sử ( \(x_0\),y\(_0\) ) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=13\\x^2+y^2=25\end{matrix}\right.\) Giá trị nhỏ nhất của tổng \(T=x_0+y_0\) là
1.Cho pt x2-2(m+1)x + m-2=0, với x là ẩn số, m thuộc R
a, Giải pt khi m=-2
b, Giải sử pt đã cho có 2 nghiệm phân biệt x1, x2. tìm hệ thức liên hệ giữa x1 và x2 mà ko phụ thuộc vào m
2. cho pt: x2-2(m-3)x-1=0
Tìm m để pt có nghiệm x1, x2 mà biểu thức a=x21 - x1x2 + x22 đạt giá trị nhỏ nhất? tìm gia trị nhỏ nhất đó
cho hệ phương trình \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a, với giá trị nào của n thì hệ phương trình có duy nhất một nghiệm
b, với giá trị nào của n thì hệ phương trình vô nghiệm
cho phương trình x2+2mx+m2-m+3;với m là tham số.Giả sử x1;x2 là hai nghiệm của phương trình.Tìm giá trị của m để biểu thức Q=x12+x22 -4x1x2 đạt giá trị lớn nhất.
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12