Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)
$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:
$a^2+2(13-a)=25$
$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$
$\Leftrightarrow a=1$
$\Rightarrow b=12$
Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$
$\Leftrightarrow y^2+y-12=0$
$\Leftrightarrow (y-3)(y+4)=0$
$\Rightarrow y=3$ hoặc $y=-4$
Vậy $(x,y)=(4,3); (-3,-4)$
Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$