Cho x+y+z=0. Chung minh rằng (2011x/xy+2011x+2011) +(y/yz+y+2011) +(z/xz+z+1) =1 b, cho x, y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0 Tính giá trị của M=(x+y) ^2015+(x-2)^2016+(y+1) ^2017
biet (x+y+2)(xy+2x+2y)=2xy Chung minh rang (x+y+2)^2015=x^2015+y^2015+2^2015
x^2013+y^2013=x^2014+y^2014=x^2015+y2015 tinh x^2016+y^2016
cho x, y, z khác 1 chứng minh giá trị sau không phụ thuộc vào biến x, y, z.( xy+2x+1/xy+x+y+1)+(yz+2y+1/yz+y+z+1)+(zx+2z+1/zx+z+x+1)
CMR nếu x,y thuộc Z thì M=(xy - 1) (x^2015+y^2015) - (xy + 1)(x^2015- y^2015)chia hết cho 2
cho a=x^3y-xy^3+y^3z-yz^3+z^3x/x^2y-xy^2+y^2z-yz^2+z^2x-zx^2 a) với giá trị nào của x,y,z thì A có nghĩa b) tính giá trị của A khi x=-1/2, y=5/2,z=8
cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
Cho x,y,z thỏa mãn: z2 + 2(xy- xz-yz)=0 và x+y#z; y#z
CMR: \(\frac{x^2+\left(x+2y-z\right)^2}{y^2+\left(2x+y-z\right)^2}\) =\(\frac{x+2y-z}{2x+y-z}\)
Cho x,y,z la cac so thuc khac 0. Thoa man : z2+z(xy-xz-yz)=0
Chung minh rang x2+(x+2y-z)2 / y2+(2x+y-z)2 = x+2y-z / 2x+y-z