Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thiện Lam

1. Cho tứ diện ABCD có AD vuông góc (ABC), AD=a√3. Góc giữa (ABC) và (DBC) bằng 60⁰. Gọi M là trung điểm AD. Tính khoảng cách từ M đến (BCD). 2. Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình chữ nhật tâm O. Biết AD=2a, SA=a. Khoảng cách từ O đến (SCD) bằng

Câu 2: ABCD là hình chữ nhật có tâm O

=>O là trung điểm của AC

=>d(A;(SCD))=2d(O;(SCD))

Kẻ AH⊥SD tại H

ta có: CD⊥ AD(ABCD là hình chữ nhật)
CD⊥ SA(SA⊥(ABCD))

AD,SA cùng thuộc mp(SAD)

Do đó CD⊥(SAD)

=>CD⊥AH

Ta có: AH⊥SD

AH⊥CD
mà SD,CD cùng thuộc mp(SDC)

nên AH⊥(SCD)

=>AH là khoảng cách từ A đến mp(SCD)

Xét ΔSAD vuông tại A có AH là đường cao

nên \(\frac{1}{AH^2}=\frac{1}{AS^2}+\frac{1}{AD^2}=\frac{1}{\left(2a\right)^2}+\frac{1}{a^2}=\frac{1}{4a^2}+\frac{1}{a^2}=\frac{5}{4a^2}\)

=>\(AH^2=\frac{4a^2}{5}\)

=>\(AH=\frac{2a\sqrt5}{5}\)

=>\(d\left(A;\left(SCD\right)\right)=\frac{2a\sqrt5}{5}\)

=>\(d\left(O;\left(SCD\right)\right)=\frac{2a\sqrt5}{5}:2=\frac{a\sqrt5}{5}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Thị Phương Linh
Xem chi tiết
Thư Hình
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Ánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết