Câu 2: ABCD là hình chữ nhật có tâm O
=>O là trung điểm của AC
=>d(A;(SCD))=2d(O;(SCD))
Kẻ AH⊥SD tại H
ta có: CD⊥ AD(ABCD là hình chữ nhật)
CD⊥ SA(SA⊥(ABCD))
AD,SA cùng thuộc mp(SAD)
Do đó CD⊥(SAD)
=>CD⊥AH
Ta có: AH⊥SD
AH⊥CD
mà SD,CD cùng thuộc mp(SDC)
nên AH⊥(SCD)
=>AH là khoảng cách từ A đến mp(SCD)
Xét ΔSAD vuông tại A có AH là đường cao
nên \(\frac{1}{AH^2}=\frac{1}{AS^2}+\frac{1}{AD^2}=\frac{1}{\left(2a\right)^2}+\frac{1}{a^2}=\frac{1}{4a^2}+\frac{1}{a^2}=\frac{5}{4a^2}\)
=>\(AH^2=\frac{4a^2}{5}\)
=>\(AH=\frac{2a\sqrt5}{5}\)
=>\(d\left(A;\left(SCD\right)\right)=\frac{2a\sqrt5}{5}\)
=>\(d\left(O;\left(SCD\right)\right)=\frac{2a\sqrt5}{5}:2=\frac{a\sqrt5}{5}\)







