a: Xét ΔAME và ΔBMC có
MA=MB
\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)
ME=MC
Do đó: ΔAME=ΔBMC
b: Xét ΔAFN và ΔCBN có
NA=NC
\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)
NF=NB
Do đó: ΔAFN=ΔCBN
c: ΔAME=ΔBMC
=>\(\widehat{MAE}=\widehat{MBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC
d: ΔAME=ΔBMC
=>AE=BC
ΔANF=ΔCNB
=>\(\widehat{NAF}=\widehat{NCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC
ΔANF=ΔCNB
=>AF=CB
Ta có: AF=CB
AE=BC
Do đó: AE=AF
Ta có: AE//BC
AF//BC
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF