Ôn tập cuối năm môn Đại số 11

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
sgfr hod

1. cho h/c đều SABCD có AB=a. Góc giữa cạnh bên và mặt đáy=45o . Tính VS.ABCD

Gọi O là tâm của hình vuông ABCD

Vì S.ABCD là hình chóp đều và O là tâm của đáy

nên SO\(\perp\)(ABCD)

Góc giữa cạnh bên và mặt đáy là 45 độ

=>\(\widehat{SA;\left(ABCD\right)}=45^0\)

=>\(\widehat{AS;AO}=45^0\)

=>\(\widehat{SAO}=45^0\)

ABCD là hình vuông

=>\(AC=AB\cdot\sqrt{2}=a\sqrt{2}\)

O là tâm của hình vuông ABCD

=>O là trung điểm của AC

=>\(AO=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)

Xét ΔSOA vuông tại O có \(tanSAO=\dfrac{SO}{OA}\)

=>\(\dfrac{SO}{\dfrac{a\sqrt{2}}{2}}=1\)

=>\(SO=\dfrac{a\sqrt{2}}{2}\)

Thể tích hình chóp S.ABCD là:

\(V=\dfrac{1}{3}\cdot SO\cdot S_{ABCD}=\dfrac{1}{3}\cdot\dfrac{a\sqrt{2}}{2}\cdot a^2=\dfrac{a^3\cdot\sqrt{2}}{6}\)