Ta có:
\(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
\(\Leftrightarrow\dfrac{\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-2x\right)}{\left(1-x\right)\left(1+y\right)}=1\)
\(\Leftrightarrow1-y-2x+2xy+1-x-2y+2xy=1+xy-x-y\)
\(\Leftrightarrow2x+2y-1=3xy\)
Khi đó:
\(M=x^2+y^2-xy\)
\(M=\left(x^2+y^2+2xy\right)-3xy\)
\(M=\left(x+y\right)^2-3xy\)
Thay \(3xy=2x+2y-1\) ta được:
\(M=\left(x+y\right)^2-2x+2y-1\)
\(M=\left(x+y\right)^2-2\left(x+y\right)-1\)
\(M=\left(x+y-1\right)^2\)
Vậy \(M=\left(x+y-1\right)^2\) là bình phương của một số hữu tỉ