Bài 1:
\(P=\dfrac{x-2}{\sqrt{x}-1}=\dfrac{x-1-1}{\sqrt{x}-1}=\sqrt{x}+1-\dfrac{1}{\sqrt{x}-1}\)
P nguyên khi 1 ⋮ `(\sqrt{x}-1)'
`=>\sqrt{x}-1∈Ư(1)={1;-1}`
`=>\sqrt{x}∈{2;0}`
`=>x∈{4;0}`
Bài 2:
\(Q=\dfrac{2\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+6}{\sqrt{x}-3}=2+\dfrac{6}{\sqrt{x}-3}\)
Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}-3\ge-3\)
\(\Rightarrow\dfrac{6}{\sqrt{x}-3}\ge\dfrac{6}{-3}=-2\Rightarrow Q\ge2+\left(-2\right)=0\)
Vậy `Q_(min)=0` khi `x=0`

