a: \(A=\left(\dfrac{\sqrt{a}}{a+2\sqrt{a}}+\dfrac{1}{\sqrt{a}-2}\right)\cdot\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right)\cdot\dfrac{a-4}{\sqrt{a}}\)
\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\cdot\dfrac{a-4}{\sqrt{a}}=\dfrac{2\sqrt{a}}{\sqrt{a}}=2\)
b: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c: \(C=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)