\(x=\sqrt[3]{4-2\sqrt{2}}+\sqrt[3]{4+2\sqrt{2}}\)
\(\Leftrightarrow x^3=4-2\sqrt{2}+4+2\sqrt{2}+3\cdot\sqrt[3]{\left(4-2\sqrt{2}\right)\left(4+2\sqrt{2}\right)}\cdot x\)
=>\(x^3=8+3\cdot\sqrt[3]{16-8}\cdot x\)
=>\(x^3=6x+8\)
=>\(x^3-6x-8=0\)
=>\(\left[{}\begin{matrix}x=2\sqrt{2}\left(nhận\right)\\x=-2\sqrt{2}\left(loại\right)\end{matrix}\right.\)
\(P=x^3-6x+12=x^2-6x-8+20=20\)