Gọi số sách ở ngăn thứ nhất lúc đầu là x (cuốn sách; \(x\in\mathbb{N}^*\))
Số sách ở ngăn thứ hai lúc đầu là: \(400-x\) (cuốn sách)
Số sách ở ngăn thứ nhất nếu chuyển đi 80 cuốn sách là: \(x-80\) (cuốn sách)
Số sách ở ngăn thứ hai nếu thêm 80 cuốn sách là: \(400-x+80=480-x\) (cuốn sách)
Vì sau khi chuyển sách, số sách ở ngăn thứ hai gấp 3 lần số sách ở ngăn thứ nhất nên ta có phương trình:
\(480-x=3\left(x-80\right)\)
\(\Leftrightarrow480-x=3x-240\)
\(\Leftrightarrow4x=720\)
\(\Leftrightarrow x=180\left(tm\right)\)
Khi đó, số sách ở ngăn thứ hai lúc đầu là: \(400-180=220\) (cuốn sách)
Vậy: ...

