Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tukudaozaqua
Nguyễn Lê Phước Thịnh
13 tháng 5 2024 lúc 4:32

 

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)

b: \(B=\dfrac{x\sqrt{x}+12\sqrt{x}-8}{x\sqrt{x}-8}-\dfrac{\sqrt{x}}{x-4}:\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x\sqrt{x}+12\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}-\dfrac{\sqrt{x}}{x-4}\cdot\dfrac{\sqrt{x}+2}{1}\)

\(=\dfrac{x\sqrt{x}+12\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{x\sqrt{x}+12\sqrt{x}-8-\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\)

\(=\dfrac{x\sqrt{x}+12\sqrt{x}-8-x\sqrt{x}-2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\)

\(=\dfrac{-2x+8\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\)

\(=\dfrac{-2\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}=\dfrac{-2\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+4}\)

Để B=1 thì \(-2\left(\sqrt{x}-2\right)=x+2\sqrt{x}+4\)

=>\(x+2\sqrt{x}+4=-2\sqrt{x}+4\)

=>\(x+4\sqrt{x}=0\)

=>\(\sqrt{x}\cdot\left(\sqrt{x}+4\right)=0\)

=>\(\sqrt{x}=0\)

=>x=0(nhận)

tukudaozaqua
12 tháng 5 2024 lúc 21:59

cứu

 


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết