Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thị hải yến
Nguyễn Văn A
15 tháng 3 2023 lúc 23:00

d) \(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\left(1\right)\\4x^4+y^4=4x+y\left(2\right)\end{matrix}\right.\)

Từ (1) suy ra: \(y^3-1=xy^2-x^3\)

\(\left(2\right)\Rightarrow4x^4-4x+y\left(y^3-1\right)=0\)

\(\Rightarrow4x^4-4x+y\left(xy^2-x^3\right)=0\)

\(\Rightarrow4x^4-4x+xy\left(y^2-x^2\right)=0\left(\cdot\right)\)

Với x=0. (1)=>y=1.

Với x khác 0. \(\left(\cdot\right)\Rightarrow4x^3-4+y\left(y^2-x^2\right)=0\)

\(\Rightarrow4x^3+y^3-x^2y=4\left(3\right)\)

Nhân mỗi vế của (1) cho 4 rồi trừ đi (3) ta được:

\(3y^3-4xy^2+x^2y=0\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\3y^2-4xy+x^2=0\end{matrix}\right.\)

Với y=0. (1)=>x=1.

Với \(3y^2-4xy+x^2=0\Rightarrow\left(x-y\right)\left(x-3y\right)=0\Rightarrow\left[{}\begin{matrix}x=y\\x=3y\end{matrix}\right.\)

*\(x=y\). Thay vào (1) ta được \(x^3=1\Rightarrow x=1\Rightarrow y=1\)

*\(x=3y\). Thay vào (1) ta được: \(\left(3y\right)^3+y^3-3y.y^2=1\)

\(\Leftrightarrow25y^3=1\Leftrightarrow y=\dfrac{1}{\sqrt[3]{25}}\Rightarrow x=\dfrac{3}{\sqrt[3]{25}}\)

Thử lại ta có nghiệm (x;y) của hệ phương trình trên là \(\left(0;1\right),\left(1;0\right),\left(1;1\right),\left(\dfrac{3}{\sqrt[3]{25}};\dfrac{1}{\sqrt[3]{25}}\right)\)


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết