a: \(\text{Δ}=\left(2m+1\right)^2-4\left(2m+10\right)\)
\(=4m^2+4m+1-8m-40\)
\(=4m^2-4m-39\)
Để phương trình có hai nghiệm phân biệt thì \(4m^2-4m+1>40\)
\(\Leftrightarrow\left(2m-1\right)^2>40\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{2\sqrt{10}+1}{2}\\m< \dfrac{-2\sqrt{10}+1}{2}\end{matrix}\right.\)
b: \(A=10x_1x_2+\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m+1\right)^2+8\left(2m+10\right)\)
\(=4m^2+4m+1+16m+80\)
\(=4m^2+20m+81\)
\(=4m^2+20m+25+56=\left(2m+5\right)^2+56>=56\)
Dấu = xảy ra khi m=-5/2
