a: \(\Leftrightarrow2x^2+3x-2x-3=0\)
=>(2x+3)(x-1)=0
=>x=-3/2 hoặc x=1
b: \(\Leftrightarrow\left(2x+1\right)^2=0\)
=>2x+1=0
hay x=-1/2
c: \(\Leftrightarrow x^2-6x-2=0\)
\(\Leftrightarrow\left(x-3\right)^2=11\)
hay \(x\in\left\{\sqrt{11}+3;-\sqrt{11}+3\right\}\)
\(a,\\ \Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\\ c,\\ \Leftrightarrow\dfrac{x^2-6x-2}{3}=0\\ \Leftrightarrow\left(x-3\right)^2-2-3^2=0\\ \Leftrightarrow\left(x-3\right)^2=2+3^2\\ \Leftrightarrow x-3=\pm\sqrt{11}\\ \Leftrightarrow x=\pm\sqrt{11}+3\\ d,\\ \Leftrightarrow2x^2+\left(-1+2\sqrt{2}\right)x-\sqrt{2}=0\)
\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+\sqrt{2}=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(b,\\ \Delta=4^2-4.8.1=0\\ \Rightarrow x=\dfrac{-1}{2}\)

